
Documentation of a Linux driver and interface class for

the Tundra Universe II PCI to VME bridge

Version 0.94, supporting Kernel 2.4.x and 2.6.x

Dr. Andreas Ehmanns

January 2008

http://universe2.sourceforge.net

Contents

1 Introduction 1

2 Installation 3
2.1 Driver . 3
2.2 Driver interface . 5
2.3 VME debugger . 5
2.4 Test and demonstration programs . 5

3 General informations 6
3.1 Master and slave images . 6
3.2 DMA . 6
3.3 Interrupt handling . 6

4 How to use this driver 7
4.1 Simple read and write functions . 7
4.2 Memory mapped transfers . 10
4.3 DMA transfers . 11

4.3.1 Direct mode . 11
4.3.2 Linked List Mode . 13
4.3.3 DMA multi-buffer handling . 15

4.4 Slave images . 16
4.5 VMEBus Interrupt handling . 17
4.6 VMEBus Interrupt generation . 19
4.7 Mailbox access . 19
4.8 Image options . 21
4.9 VMEBus error handling and test functions . 22
4.10 Using the /proc filesystem . 24

5 Performance tests 25
5.1 Simple read/write functions . 25
5.2 Simple block read/write functions . 26
5.3 Memory mapped transfers . 27
5.4 DMA . 28
5.5 Blocktransfer, BLT and MBLT . 29
5.6 Linked list operation . 30
5.7 Interrupt service time . 31

6 Miscellaneous 32
6.1 Byte swapping . 32
6.2 Compiler Optimization . 32
6.3 memcpy and others . 33
6.4 Message logging . 34

i

6.5 VMIC define . 34
6.6 readUniReg, writeUniReg . 34
6.7 VMEBus SYSRESET∗ . 34
6.8 Driver reset . 35

7 Quick reference 36

ii

1 Introduction

Writing software for VMEBus modules was very easy with 68K machines and operating systems
like OS-9 or others. Accessing pointers with addresses outside the onboard memory (or reserved
areas) were automatically transposed into cycles on the VMEBus. This transposition could be
realized with a few standard IC’s due to the similarity of the CPU-bus and VMEBus structure.
Dumping the first 4096 bytes of an external memory at address 0xA2000000 was simply done
by:

unsigned int *ptr;

ptr = (unsigned int *) 0xA2000000;

cout << hex;

for (i = 0; i < 1024; i++)

cout << *ptr++ << " \n" ;

Since the production line of 68K CPUs reached its end with the 68060 chip more recent VMEBus
CPUs (e.g. Intel or PowerPC based) are available. In most cases the implementation of the
VMEBus on such boards is done with a PCI to VMEbus bridge from Tundra (www.tundra.com).
The first version of this chip was called Universe the newer one Universe II. This chip is not
only a bridge but provides many additional functions like interrupt handling, DMA transfers,
FIFOs, mailboxes, semaphores and many more.
But there is no way to access the VMEBus directly like it is done in the previous example. A
driver is needed which provides the user with access to the VMEBus and the other functions
on the Universe chip.

For the Linux operating system there already exist two drivers.

• www.vmelinux.org (VMELinux project)

• http://lisa2.physik.uni-bonn.de/˜ hannappe/software/universe doc/universe.html

Why writing a new driver?
First of all both drivers listed above are no longer maintained since quite a lot of time and
additionally provide no support for 2.6.x kernel versions.
Secondly both drivers have the disadvantage that the user has to dive into the details of address
mappings, calculation of different (virtual) addresses and all the related stuff.

To overcome this limitations this project provides a new driver together with an user friendly
interface C++ class allowing access to the VMEBus with a set of VMEBus instructions but
without the need of knowing details how to communicate with the driver. Especially all the
dealing with virtual and mapped address is completely hidden from the user. Therefore the user
only needs to think about VME addresses and what he wants to do with his VME module(s).

1

The actual driver of this project works with kernel versions 2.4.x and 2.6.x and provides:

• Access to VMEBus with A32/A24/A16, D32/D16/D8 and BLT/MBLT

• Access from VMEBus to PCI resources

• Easy-to-use read and write functions for VMEBus addresses

• A fast pointer-like access mode

• DMA transfers (including linked-list-operation)

• Interrupt handling for DMA, VMEBus irqs and mailboxes

2

2 Installation

Get a zipped archive of the complete software from http://universe2.sourceforge.net. Unzip
and extract the archive with tar xzvf universeII-0.93.tar.gz. This will create a directory with
name universeII and a small number of subdirectories which will be discussed in detail in the
next sections.

2.1 Driver

Since the building of kernel modules significantly changed from kernel tree 2.4 to 2.6 there exist
two subdirectories for the drivers. One for the 2.4.x kernel universeII/driver-2.4 and one for
the 2.6.x kernel tree universeII/driver-2.6. To compile the driver change to the corresponding
subdirectory and type make. The object code (module) must then be inserted into the kernel
with insmod universeII.o (2.4.x) insmod universeII.ko (2.6.x) or use the script ./ins. Note that
you must be root to do this! To remove the driver type rmmod universeII or ./uns. Before you
can use the driver you must create some devices under /dev. This is simply be done by typing
make devices. If you update from an older driver version to 0.93 or higher you have do delete
the old devices with rm /dev/vme* and create them again with make devices. The reason for
this is the change of the vme driver device number from 70 to 221 to be compliant with the
linux device number scheme.

A more elegant (and the prefered) way to load the driver is to use the module loader. The
module is loaded automatically when one of the universeII devices is accessed. First add the
following two lines to /etc/modules.conf:

Universe II VMEBus driver

alias char-major-221 universeII

Then copy the driver (universeII.o or universeII.ko for 2.6.x) to
/lib/modules/2.x.x/kernel/drivers/char - where 2.x.x must be replaced by your actual
kernel version - and last step type:

depmod -a

The driver has been compiled without any problems using gcc versions up to 3.3.5 and was
tested on different Linux distributions up to Suse 10.0 and Debian 3.0 versions.
It was used with kernel versions up to 2.4.27/2.6.15 and worked properly. To check if the driver
was successfully loaded have a look at /var/log/messages and /proc/universeII.

When the driver is loaded it sets the universeII to be VMEBus system controler. In cases
where a VMEBus system controler is already installed in the crate, load the driver with option
sys ctl=0. This will prevent the driver to activate the onboard system controler. When using
the module loader, add the following line to /etc/modules.conf:

3

options universeII sys_ctrl=0

There are some other VME parameters which can be set via options:

Option Default Range Description

sys ctrl 1 0..1 Sets VME board to be system controller

br level 3 0..3 Sets the VMEBus request level

req mode 0 0..1 VMEBus request mode, 0=demand, 1=fair

rel mode 0 0..1 VMEBus release mode, 0=RWD, 1=ROR

vbto 3 0..7 VMEBus Time-out

0=disable

1=16µs

2=32µs

3=64µs

4=128µs

5=256µs

6=512µs

7=1024µs

varb 0 0..1 VMEBus Arbitration Mode, 0=Round Robin, 1=Priority

varbto 1 0..2 VMEBus Arbitration Time-out

0=disable Timer

1=16µs

2=256µs

vrai bs see comments below

In case of problems concerning the communication with a VMEBus module, first check if the
module supports the VMEBus request level or the release mode which is used by the driver.

For external use of the four onboard mailboxes, the universeII registers must be accessible from
VMEBus side. The base address can be set with:

options universeII vrai_bs=0xa0000000

In this case the registers can be access from VMEBus side with address 0xa0000000 + register
offset. For more informations see chapter 4.7 mailbox access.

4

2.2 Driver interface

A user who wants to use the VMEbus is (in general) not interested in driver details. To hide
the driver calls from the end-user there exists a driver interface with name VMEBridge. This
C++ class provides the user with a set of functions which allow access to the VMEbus without
the need of using driver calls explicitely.
To compile this class as a static and a shared library, change to the directory universeII/vmelib
and type make. This creates the library libvmelib.a and libvmelib.so.0.9.3. To install the shared
lib on your system type make install.

Due to changes in the kernel, it can not be avoided that the way of passing information from
the interface class to the driver has slightly to be adapted from time to time. Therefore it is
highly recommended to always use driver and interface class with same version numbers!

For simple VMEbus modules this class can be used directly. For more complex modules it
is recommended to inherit a new class from the base class VMEBridge and to implement all
module specific function in this new class.

2.3 VME debugger

An easy way to check and test VMEBus modules without writing test code are programs like
the OS-9 debugger debug. A similar program that demonstrates the use of the class VME-
Bridge and provides the VMEBus user with a simple but useful debugging tool can be found in
universeII/vmedebug. With a small set of commands (start vmedebug and type help) it would
become easy to test the VMEbus and most modules.

For A24 transfers replace the upper 8 bit (24..31) with ones, for A16 access replace the upper
16 bits with ones.
Example: To read from address 0xE00000 with A24, type rl 0xFFE00000.

2.4 Test and demonstration programs

A set of test and demonstration programs are delivered with this distribution to make you
familiar with the use of driver and interface class. These files are the source code of the
examples dicussed in chapter 4.You can find them in universeII/test and compile them with
make.

5

3 General informations

This chapter describes in short words the principles of the universeII chip. For detailed infor-
mations take a look at the Tundra homepage (www.tundra.com) or the universe II manual.

3.1 Master and slave images

Communication between PCI and VMEBus is implemented by the concept of images. One can
define an area of PCI addresses (image) which will be mapped to the VMEBus, or an area of
VMEBus addresses which are mapped to the PCI bus. The first one is called master image,
the second one slave image. The maximum number of images is eight for the master and eight
for the slave images.
To access a VMEBus module one first sets up an image which includes the addresses of the
module and then uses read and write commands to transfer data to/from the module.

3.2 DMA

For fast data transfers and block transfers between PCI and VMEBus the universeII chip
includes a high performance onboard DMA. Operations between these two busses are decoupled
by a bidirectional FIFO. The DMA provides normal data transfers cycles but also blocktransfers
(BLT) or multiplexed blocktransfers (MBLT).
An additional feature is the linked-list operation mode. In this mode the DMA transfers a
series of non-contiguous blocks of data without software intervention.

3.3 Interrupt handling

The universeII provides a flexible scheme to map interrupts from one bus to the other one.
The interrupt output pins on PCI INT#[7:0] and on VMEBus VIRQ#[7:1] are software pro-
grammable. In addition interrupts can be generated from different hardware and software
sources, e.g. DMA event, mailbox access, location monitor or error states like SYSFAIL* or
ACFAIL*.

6

4 How to use this driver

To explain the usage of the driver and the VMEBridge class, let’s start with a simple program
which reads the first 4096 bytes of an external memory at VMEBus address 0xA2000000.
Note: In the next subsections this example will be expanded to introduce additional function
like memory mapped transfers or DMA. All these test programs can be found in directory
universeII/test.

4.1 Simple read and write functions

//test_simple.cpp

#include <iostream.h>

#include "vmelib.h"

int main()

{

int image,i;

unsigned int dummy32;

VMEBridge vme;

image = vme.getImage(0xA2000000, 0x10000, A32, D32, MASTER);

if (image < 0)

{

cerr << "Can’t allocate master image !\n";

return 0;

}

cout << hex;

for (i = 0; i < 1024; i++)

{

vme.rl(image, 0xA2000000 + i*4, &dummy32);

cout << i << ": " << dummy32 << "!\n";

}

}

The first step to do is the declaration of a class VMEBridge.

VMEBridge vme;

7

This calls the constructor of this class which initializes some variables and checks that the
driver, the universe control device and the DMA device are accessible.

Next step is to define a master image to access the VMEBus memory.

int getImage(unsigned int base, unsigned int size, int vas, int vdw, int ms);

The function getImage() allocates an image which allows access to VMEBus resources from ad-
dress base to base+size. The parameters vas and vdw define the addessing type (A32/A24/A16/...)
and the data with (D64/D32/D16/...)1 used for VMEBus cycles. These types are defined in
vmelib.h and should always be used. The last parameter ms indicates if this images should be
a master or slave image. Predefined values are MASTER and SLAVE (How to use slave images is
explained at the end of this chapter). Since the number of images that can be allocated by one
application is limited only by the number of free images, the number of the allocated image is
returned from getImage(...). This number is needed as parameter for most functions of the
VMEBridge class. If an error occured (e.g. no free image available) the returned image number
is negative.

The (theoretical) maximum size of an image is the range of a 32-bit value but the main limita-
tion is the availability of I/O memory. Have a look at cat /proc/iomem to see what is allocated
by different resources (You will also find entries from the universeII driver here). When re-
questing a new image, the driver searches for free I/O address space for the mapping to the
VMEBus. If no free address range can be found to cover the requested image size an error will
be returned.
You see that it is a good idea to save resources and request an image with only that size which
is really needed to handle the module.
The minimum size of an image (64K) is limited by the universeII chip and will automatically
expanded to 64K if a smaller image size is requested.

Just to remind you: All the address parameters for the functions in the VMEBride class are
VME addresses. Don’t care about address mappings or re-calculation of addresses like you
possibly know from other software. All this stuff is handled inside the VMEBridge class.

Note: Each available image can be programmed with any combination of vas and vdw. There
is no predefined relation between image number and data/address width like it is done in other
drivers.

When leaving the scope where vme is defined (in this case leaving the program) the destructor
is called and all allocated images are released. The released image is free again and can be
reallocated by the program or another application. Sometimes it can be useful to release an
image manually, e.g. when it is needed no longer but the scope is not left. This can be done

1This is the maximum (!) date size on VMEbus. Example: Setting D32 allows also D16 and D8 cycles.

8

by calling

void releaseImage(int image);

where image is the image number returned by getImage(...).

For read or write transfers to/from a VMEBus module there are a set of six functions. The
first letter indicates if the function performs a read or a write cycle, the second letter defines
the data width. long for 32-bit transfers, word for 16-bit cycles and byte for 8-bit data.

int rl(int image, unsigned int addr, unsigned int *data);

int wl(int image, unsigned int addr, unsigned int *data);

int rw(int image, unsigned int addr, unsigned short *data);

int ww(int image, unsigned int addr, unsigned short *data);

int rb(int image, unsigned int addr, unsigned char *data);

int wb(int image, unsigned int addr, unsigned char *data);

Parameter image is the number returned by getImage, addr is the VMEBus address and *data

contains the value to read/write2.
Note: If you use an Intel based system, the data on the VMEBus data lines is swapped! (See
chapter 6.1 for more information.)

In addition these simple functions can be used to transfer blocks of data. In this case there is
one more parameter:

int rl(int image, unsigned int addr, unsigned int *data, int size);

int wl(int image, unsigned int addr, unsigned int *data, int size);

int rw(int image, unsigned int addr, unsigned short *data, int size);

int ww(int image, unsigned int addr, unsigned short *data, int size);

int rb(int image, unsigned int addr, unsigned char *data, int size);

int wb(int image, unsigned int addr, unsigned char *data, int size);

The size of the data block in bytes (!) has to be passed to this functions and data is always
a pointer to the data buffer. This solution is much faster than calling rl/wl/... for each data
word since the loop over the data block is done in the driver and only one driver call is needed
(see also chapter 5 Performance tests).

2In Addition the functions wl, ww and wb can be used with passing parameter data as call-by-value instead
of call-by-reference.

9

This is the easiest way to perform read and write cycles on the VMEBus but there is one
disadvantage of this method. Depending on your CPU power the cycle time is in the order of
a few microseconds (1...5 µs). For some applications this is no problem, but for system which
are optimized for high speed data transfers (e.g. data acquisition systems) faster cycles are
desirable. For transfers of complete blocks of data this can be done using the onboard DMA
device. For all other cases there exists one additional method which will be discussed now.

4.2 Memory mapped transfers

In this mode accessing VMEBus modules is nearly the same like on 68K machines. The allo-
cation of an image is still needed but the for-loop in the example above will be replaced:

//test_mmap.cpp

#include <iostream.h>

#include "vmelib.h"

int main()

{

int image,i;

unsigned int *ptr;

VMEBridge vme;

image = vme.getImage(0xA2000000, 0x10000, A32, D32, MASTER);

if (image < 0)

{

cerr << "Can’t allocate master image !\n";

return 0;

}

ptr = (unsigned int *) vme.getPciBaseAddr(image);

cout << hex;

for (i = 0; i < 1024; i++)

cout << "i: " << *ptr++ << "!\n";

}

The first thing is to determine the PCI base address of the image specified by image. When
setting up an image, the driver reserves an area of free PCI addresses which are mapped to
the range of VMEBus addresses specified by getImage. These addresses can only be accessed
by the kernel. When requesting a new image the driver maps these PCI addresses into user

10

space. The first address in user space corresponds to the first VMEBus address allocated by
getImage. 3

Accessing *ptr in the upper example means reading address 0xA2000000. Since ptr is declared
as unsigned int the VMEBus cycle is D32. Using a pointer of unsigned short will lead to
a D16 cycle (if the image was allocted with D16!). Write cycles are straight forward.

For more complex VMEBus modules just define a struct with the same address layout as im-
plemented in the VMEBus module, define a pointer of the struct type, assign the base address
and access the different register of the VMEBus module in this direct way.

But be warned! In this mode a direct communication with the universeII chip is used and
therefore no support from the driver is available. This is the fastest way to perform VME
transactions but no checking for bus errors and other unexpected cases is performed. Accessing
a wrong address leads directly to a segmentation fault. For testing of a new module it’s a safer
way to start with simple read and write functions and after debugging change to faster cycles.

4.3 DMA transfers

The fastest data transfers to/from VMEBus can be achived using the onboard DMA. Due to
the direct copy between VME-device and main memory there is no CPU power needed for
the transfer. This is very important for data acquisition systems where multiple processes or
threads are running. Two modes of DMA operation are available: Direct Mode and Linked List
Mode which will be discussed seperately.
Common to both modes is the use of interrupts for indicating that DMA operation is finished.
There is no polling on registers, so no CPU time is wasted by waiting for the DMA to complete.
In addition there is a timer which aborts the DMA after one second if it is still in running or
in hangup state. All implemented DMA calling function (DMAread(), DMAwrite() or exec-
CmdPktList()) are blocking which means that one can be sure that the DMA job is done (or
timed out) when returning from the call.

4.3.1 Direct mode

In direct mode the DMA registers are programmed directly. This is the standard mode for
DMA transfers. Returning to our small example code, readout of the external memory can be
done by:

//test_dma.cpp

#include <iostream.h>

#include "vmelib.h"

int main()

3This is the only use-case where a non-VME address has to be handled by the application.

11

{

int i, offset;

unsigned int base, *ptr;

VMEBridge vme;

base = vme.requestDMA();

if (!base)

{

cerr << "Can’t allocate DMA !\n";

return 0;

}

vme.setOption(DMA, BLT_ON);

//----------------------------

offset = vme.DMAread(0xA2000000, 4096, A32, D32);

if (offset < 0)

return;

ptr = (unsigned int *) (base + offset);

cout << hex;

for (i = 0; i < 1024; i++)

cout << "i: " << *ptr++ << "!\n";

//----------------------------

vme.releaseDMA();

}

Since the DMA can be used by several applications ownership of the DMA must be allocated
and released with two functions:

int requestDMA(void)

void releaseDMA(void)

The architecture of Linux doesn’t allow the universe DMA to transfer data directly to/from a
buffer in user space. The solution to this restriction is the same used for slave images namely
using a memory area of 128 kB which is allocated by the driver. This area is mapped to the
user space of the application when calling requestDMA(). The return value is the address to
the first byte of this memory area. All DMA transfers are executed to/from this buffer. After a

12

read call, the data is stored in this buffer, before calling the write function all data to transfer
must be written to this buffer.
After a releaseDMA this buffer is no longer available and accessing it leads to a segmentation
fault!
It is obvious that requesting and releasing the DMA device needs some time. So it should be
calculated very well how often and at which places in your code the DMA will be allocated. If
your application is the only one using the DMA device, requestDMA and releaseDMA should
be called only once at the beginning and the end of your program.
The DMA read and write functions are:

int DMAread(unsigned int source, unsigned int count, int vas, int vdw);

int DMAwrite(unsigned int dest, unsigned int count, int vas, int vdw);

The parameters source and dest are the VMEBus addresses to read/write from/to, count is
the number of bytes (!) to transfer, vas and vdw are the VMEBus addressing and data widths
(see also function getImage()).

Return values are negativ in case of an error or greater/equal zero representing an byte-offset
which in some cases is needed due to a limitation of the universeII chip when dealing with DMA
cycles. Although the PCI and VMEBus addresses may be programmed to any byte aligned
address, they must be 8-byte aligned to each other (e.g. the lower three bits of each must be
identical)!!!
When starting DMA cycles (DMAwrite or DMAread) the driver checks for this limitation and
in case of difference changes (increases) the PCI address to fulfill this condition. In this cases
the data is not written/read to/from the base address returned by requestDMA() but offset

bytes (!) higher (see example above).

In the above exmaple the 32 bit VME block transfer mode is enabled with the setOption-
command (see chapter Image options). Make sure that your VME module support the BLT
mode, there is no automatical fallback to non-BLT mode if the slave module does not support
the BLT mode. If you want to use the multiplexed BLT mode (MBLT), call DMAread with
D64 instead of D32/D16/D8.

Note: There is no need to allocate an image for using the DMA. The DMA has direct access
to all possible VME addresses.

4.3.2 Linked List Mode

Unlike direct mode, in which DMA performs a transfer of a single block of data at a time,
linked-list mode allows the DMA to transfer a series of non-contiguous blocks of data without
software intervention. The DMA transfer parameters are stored in a linked list and each entry
of this list is called command packet. The data structure for the command packet stores all
necessary informations for the DMA register which are directly loaded from this structure.

13

Returning to our basic example with an external memory at 0xA2000000 a linked list can be
created with the following code.

//test_llist.cpp

#include <iostream.h>

#include "vmelib.h"

int main()

{

int i, list;

unsigned int base, *ptr, packets[5];

VMEBridge vme;

list = vme.newCmdPktList();

cout << "List number is " << list << "!\n";

packets[0] = vme.addCmdPkt(list,0,0xa2000000,16,A32,D32);

packets[1] = vme.addCmdPkt(list,0,0xa2000100,32,A32,D32);

packets[2] = vme.addCmdPkt(list,0,0xa2000300,4,A32,D32);

packets[3] = vme.addCmdPkt(list,0,0xa2000404,16,A32,D32);

packets[4] = vme.addCmdPkt(list,0,0xa2000508,16,A32,D32);

base = vme.requestDMA();

cout << "Executing list ..." << flush;

if (!vme.execCmdPktList(list))

cout << "done !\n";

ptr = (unsigned int *) (base + packets[0]);

for (i = 0; i < 4; i++)

cout << i << " = " << hex << *ptr++ << dec << "!\n";

vme.releaseDMA();

vme.delCmdPktList(list);

}

First step is creating a new list with

newCmdPktList();

The driver can manage up to 256 list and if no new list can be created, the returned list number
is negativ. Elements (called command packets) can be added to this list with

14

addCmdPkt(int list, int rw, unsigned int vmeAddr, int size, int vas, int vdw);

and are limited in number only by the amount of available kernel memory. Since it is possible
to deal with more than one list it must be specified to which list the command packets should
be appended. The second parameter indicates if the DMA transfer is a read (rw = 0) or write
cycle (rw = 1). Other values are not allowed. Next two parameters are the VMEBus source
address and the size of the DMA transfer in bytes (!). The VMEBus address width and data
width are set with vas and vdw for which predefined values exist (e.g. A32, D32, ...). The
return value is the start address where the data are stored after a DMA read, or where the
data are taken from for a DMA write cycle. Due to some restrictions of the universeII chip
the data areas returned by multiple addCmdPkt(...) commands are NOT always contiguous
(8-byte alignment). For each command packet there is an own memory area for the data. In
addition these memory areas are shared between all lists and to avoid lost data, these areas are
only accessible after requesting the DMA with requestDMA()! In addition make sure that you
don’t access these areas after releasing the DMA (see example above)!

This method seems to be a little bit complicated but the important advantage of it is the fact
that a second copy process from kernel- to user space is avoided.

An existing list can be executed by calling

int execCmdPktList(int list);

And removing this list is done by

int delCmdPktList(int list);

For both functions the return parameter is zero for success and negative if an error occured.

4.3.3 DMA multi-buffer handling

When dealing with DMA and slave images it can be very useful to divide the 128kB wide
buffer (or slave image) into several smaller buffers. This decouples transfers and speeds up
data troughput when e.g. one task reads data from one buffer while another task already
writes to another one.
Dividing the DMA memory space into several buffers is done by requesting DMA ownership
with the number of buffers as parameter.

unsigned int requestDMA(int nrOfBuffers);

Where nrOfBuffers must be in [1..128] and of 2n (1, 2, 4, 8, ...).

15

The known DMA write and read functions can be used as usual only the buffer number has to
be passed in addition.

int DMAread(unsigned int source, unsigned int count, int vas, int vdw,

unsigned int bufNr);

int DMAwrite(unsigned int dest, unsigned int count, int vas, int vdw,

unsigned int bufNr);

There is a negativ return value if the buffer number is invalid or the transfer size exceeds the
buffer size. But there is no implementation of a full buffer handler which distributes the buffers
and checks for collisions. If this is needed, it has to be added by the user.

4.4 Slave images

Slave images are needed when another VMEBus master wants to access PCI resources. Such a
master can be another VMEBus CPU, or a VMEBus module with an onboard microcontroller
or DMA device. Allowing access to an area of PCI addresses can be done, by allocating a slave
image. Example:

int imageSlave;

unsigned int slaveBase;

imageSlave = vme.getImage(0xA0000000, 0x10000, A32, D32, SLAVE);

if (imageSlave < 0)

{

cerr << "Can’t allocate slave image!!!\n";

return;

}

slaveBase = vme.getPciBaseAddr(imageSlave);

Most work is be done by calling
vme.getImage(0xA0000000, 0x10000, A32, D32, SLAVE)

Now the universeII chip responds to VMEBus cycles with A32 and D32 and addresses in
the range from 0xA0000000 to 0xA0010000. These addresses are translated into a memory
area inside kernel space which is mapped to user space. Due to some kernel restrictions the
size of a slave image is limited to 128 kB! The base address to this memory area is returned
by vme.getPciBaseAddr(imageSlave) and corresponds in our example to VMEBus address
0xA0000000. The advantage of this method is that the data which was written/read by the
external VMEBus master is directly accessible without additional copy activity between user-
and kernel-space.

The universeII VME slave interface also allows block transfers to slave images. If the slave
image was allocated as D32, the normal BLT mode is automatically supported, only for MBLT
transfers the image needs to be allocated as D64.

16

4.5 VMEBus Interrupt handling

There are many applications where it is neccessary to wait for an external module to finish
some work. This can simply be done by polling on a register on this module, but this wastes
CPU time and can only be taken into account in applications where only one thread is running.
A better way is to deal with VMEBus interrupts which are supported by nearly all more comlex
VMEBus modules. The idea is not to poll on a register but to go to sleep until the VMEBus
module creates an interrupt. This interrupt is serviced by the driver which then awakens the
sleeping application. During the sleep process no CPU time is wasted and can therefore be
used by another process.
The handling is a little bit complicated but if you need interrupts it is worth the work trying
to understand it.

Before VMEBus interrupts can be used, the driver must be prepared in a way that he knows
how to handle incoming interrupts. The needed function is declared as:

int setupIrq(int image, unsigned int irqLevel, unsigned int StatusID,

unsigned int addrSt, unsigned int valSt,

unsigned int addrCl, unsigned int valCl);

The VMEBus specification defines seven different interrupt levels VIRQ1 .. VIRQ7 and a
8 bit status/ID word which is read from the module during an interrupt acknowledge cycle.
This gives the module the possibility to distinguish different interrupts with the same level.
For using a VMEBus irq the corresponding irq level and the StatusID must be defined with
irqLevel and StatusID in setupIrq. Any combination of VmeIrq and StatusID can be used
but only once. In the case when a combination is already in use, setupIrq returns with an error.

Most VMEBus modules do not clear the VMEBus interrupt line when an interrupt acknowl-
edge cycle is finished. Thus the interrupt handler is called again directly after servicing the
previous interrupt. This locks the system and the only solution to break the lock is a reboot.
To avoid this hangup, the driver must clear the VMEBus interrupt line before it finishes and
the interrupt capability is enabled again. Most VMEBus modules clear the interrupt line when
a specific register is addressed, or a specific value is written to this register. The parameters
addrCl and valCl of setupIrq are used by the driver to clear this interrupt by writing the value
of valCl to VMEBus address addrCl. The VMEBus address is an absolut address and not
relativ to the base address of the image. Additionally it must lie in the address range which is
covered by the image with number image.

The parameters addrSt and valSt are used by the driver to start the action on a VMEBus
module which will produce the interrupt when it is finished.
Often VMEBus interrupt are used to indicate that the module has finished some work. This
action is started by writing a specific value to a specific register in this module. When doing
this in an user application and then calling the driver to sleep for the interrupt, it can happen

17

that the interrupt occures before the process went to sleep. This will result in an infinite sleep.
This can be avoided by using addrSt and valSt from inside the driver. When calling waitIrq
(see below) the driver first writes the value of valSt to VMEBus address addrSt and then goes
to sleep. The difference is, that these two instructions are atomic and can not be interrupted
by the scheduler.
If the VMEBus address of addrSt (or addrCl) is zero there will be no write action by the driver.

Now all preparation is done and waiting (and sleeping) for a VMEBus interrupt with VIRQ
level irqLevel and status/ID word StatusId can be done by calling:

waitIrq(unsigned int irqlevel, unsigned int StatusID);

This call lets your application/thread sleep until a VMEBus interrupt with level irqLevel and
status/ID word StatusId is received by the driver. If the interrupt will never be generated
your applications sleeps until forever. There are situations where this behaviour is not desired
and the application shall return after a timeout peroid. In this case use the following call:

waitIrq(unsigned int irqlevel, unsigned int StatusID, unsigned long timeout);

The parameter timeout denotes the milliseconds after which the function will return if not
interrupt occured. A value of 0 means infinite timeout (or no timeout).

But keep in mind that the precision of the timeout depends on the system timer. Have a look
at the definition of HZ which depends on systems architecture and kernel version. Values of 50,
100, 250 and 1000 are often found but other values are also possible.
Example: If HZ is set to 100 the system timer has a resolution of 10 milliseconds. All call of
waitIRQ() with a timeout of one will return somewhere between 10 and 20 milliseconds if no
interrupt occures.
Furthermore an additional jitter results from the fact that Linux is not a realtime operat-
ing system. Even if Linux often is called a soft realtime system the timing behaviour is not
deterministic.
The combination of irqLevel and statusID which was allocated via setupIRQ() will be freed
when the corresponding image is released. If this behaviour is not desired the allocated irq
resources can be freed manually by:

freeIRQ(int image, unsigned int irqLevel, unsigned int statusID);

To change or modify one (or more) parameters given to the setupIRQ() function one needs to
call freeIRQ() for clearing the old values and setupIRQ() to pass the new parameters.

18

4.6 VMEBus Interrupt generation

In the previous chapter we discussed the handling of incoming VMEBus interrupts. Now we
will have a look at the other situation where we generate VMEBus interrupt.
Calling the function

int generateVmeIrq(unsigned int irqLevel, unsigned int statusID);

generates a VMEBus interrupt with the given interrupt level. If there is an interrupt handler in
the VMEBus crate the handler performs an interupt acknowledge cycle (IACK) and reads the
status/ID. As soon as the IACK cycle is finished the functions returns. In other words: gen-
erateVmeIrq() is blocking (sleeping) as long as the generated VMEBus interrupt is not handled.

The statusID word can be every number between 1 .. 256 (VMEBus specification) but with
the limitation that only even numbers are allowed. This is a restriction from the universeII
chip which uses the lowest bit to indicate if VMEBus interrupts are generated by software or
are forwarded from PCI side. This bit is NOT writeable and in our situation always zero.
Therefore the function generateVmeIrq() checks the statusID parameter and returns with an
error if an odd number is passed.
Once again: This is a limitation by the universeII chip and NOT by the VMEBus specification
or by the driver!

The use of VMEBus interrupts is primarily dedicated for inter-module communication but can
also be used for two processes running on the same system. Example:
You can start one application setting up and waiting for a given combination of interupt level
and statusID using setupIrq() and waitIrq() and then run a second application calling generat-
eVmeIrq() with the same combination. In general this is not the best solution for inter-process
communication (IPC) and there are better mechanisms to handle IPC onboard. But it’s a good
tool to test your application when you are using VMEBus interrupts or when you have to deal
with porting of old code or other legacy stuff.

4.7 Mailbox access

One on the new features of the universeII chip was the implementation of four 32-bit mailbox
registers. These registers support access from either bus and can be enabled to generate inter-
rupts on either bus when they are written to.

In this driver they can be used for communication with other VMEBus masters without polling
on e.g. external memory locations.
One simple example: We want to wait (sleep) for an message from another VMEBus master
which indicates that data is available or valid. First the access to the universeII registers from
VMEBus side must be enabled as described in chapter Installation. This opens a 4K wide

19

image allowing access to the registers in A32, A24 or A16 address space depending on the base
address. If one of the upper eight bits of the base address (parameter vrai bs) is set, the driver
enables A32 cycles. If the upper eight bits are zero, A24 will be chosen and A16 if the upper
16 bits are zero. The offset of all registers relative to this base address can be found in the
Tundra universeII manual. The four mailbox offsets are:

mailbox offset
0 0x348
1 0x34C
2 0x350
3 0x354

Secondly a mailbox must be enabled to generate interrupts which can be done by calling

setupMBX(int mailbox);

with mailbox number (0..3) as parameter. Last step, waiting for an interrupt (which means
write access to this mailbox) is included with

unsigned int waitMBX(int mailbox);

unsigned int waitMBX(int mailbox, unsigned int timeout);

This functions returns the (32-bit) value which was written to the mailbox and triggered the
interrupt. In case of error 0xFFFFFFFF is returned, so make sure not to use this value for
communication.

Using no timeout value, this functions returns after one second if no access to the mailbox has
been done. If another timeout value (in seconds) is needed it can be passed as second parameter
to waitMBX. Valid values are in [1..10000].

20

One short example code (test mbx.cpp) to show the use of these functions.

#include <iostream.h>

#include "vmelib.h"

int main()

{

VMEBridge vme;

vme.setupMBX(2);

cout << "Waiting for mailbox 2 ..." << flush;

cout << "\nBack with message " << hex << vme.waitMBX(2,10) << dec << endl;

vme.releaseMBX(2);

}

When this program is started, you will see the message
Waiting for mailbox 2 ...

and it sleeps without any CPU usage.

Now start vmedebug on the same or a second machine in your VME crate and type
debug: wl 0xa0000350 12345678

The test program returns with output: Back with message 12345678

After 10 seconds the function returns with 0xFFFFFFFF if no access to mailbox 2 has been
done.
Releasing an allocated mailbox is not done automatically. So make sure to release the used
mailbox when it’s no longer needed with:

int releaseMBX(int mailbox);

4.8 Image options

When allocating an image with getImage() some options like address and data width can be
set via parameters but the remaining available options are set to the most common values which
are the right choice in most cases. Nevertheless in some cases it can be necessary to change
some options. For this purpose the function setOption() is provided.

void setOption(int image, unsigned int options);

21

Following options are available (The columns labeled master, slave and DMA indicate for which
image type this option is allowed):

Option Master Slave DMA Description

DATA AM x x x Sets the AM code to data access

PROG AM x x x Sets the AM code to program access

NON PRIV AM x x x Sets the AM code to non-privileged access

SUPER AM x x x Sets the AM code to supervisory access

BLT ON, BLT OFF x - x Enables/Disables block transfers

POST WRITE EN x x - Enables posted write cycles

POST WRITE DIS x x - Disables posted write cycles

PREF READ EN - x - Enables prefetched read cycles

PREF READ DIS - x - Disables prefetched read cycles

PCI LCK RMW EN - x - Enables PCI bus lock for VME RMW cycles

PCI LCK RMW DIS - x - Disables PCI bus lock for VME RMW cycles

The default settings for a new created master image are DATA AM, NON PRIV AM, BLT OFF,
and POST WRITE EN and for a slave image in addition PREF READ DIS and PCI LCK RMW DIS.
Setting more than one option with one function call can be done by OR-ing the options.
Example:

setOption(image, SUPER_AM | BLT_ON);

Note that not all combination make sence: Using e.g. BLT ON and BLT OFF in one function
call will result in disabling block transfers. In General: using ambiguous options will lead to
the disabling of this option.

4.9 VMEBus error handling and test functions

VMEbus error handling is very poorly supported by the Tundra universeII chip itself and
therefore NOT a lack of this driver. The functionality provided by the universeII chip is used
to provide as much VMEBus error handling as possible. Depending on the used read/write
functions, VMEBus errors are handled in different ways.

• For simple read/write functions there is a checking for bus errors implemented in the
driver and the interface class. If a VMEBus access causes a bus error, a message
will be printed to screen or to the redirected ostream (see chapter message logging).

22

If posted write is enabled for this image (option POST WRITE EN, which is de-
fault !!!) a bus error for write access will NOT be detected because the transfers be-
tween PCI and VME are decoupled. If this is not desired, disable posted write with
setOption(int image, POST_WRITE_DIS); But note that this could decrease the trans-
fer speed slightly.

• Memory mapped transfers: On some systems a bus error directly leads to a segmentation
fault, on other systems this will be undetected. So it will be wise to use this mode after
debugging the system.

• For DMA-transfers there is a checking for different errors (including bus errors) after
completion. Error are printed to screen or are redirected.

There are two additional functions that deal with this topic. Checking if a module is accessible
before reading or writing to it can be done with the following function:

int there(unsigned int addr);

First there will be a scan over all existing images to find out if this address is covered by any
image. Then a read cycle with the attributes of the found image (address with, data width, ...)
will be executed and finally a bus error check will be done.
Since this function always uses the maximum data width of the image supporting the requested
address, additional functions have been introduced to allow tests with defined data width:

int there8(unsigned int addr);

int there16(unsigned int addr);

int there32(unsigned int addr);

These functions perform a read test with the requested data width (D8, D16 or D32) if the
allocated image allows the desired data with.

The return value will be 0 if the check failed, any other value for success.

In cases where memory mapped transfers are used a check of the bus error status can be carried
out using the function:

int testBerr();

A value of 1 is returned if an uncleared bus error was found, 0 in the other case. In addition a
possible existing bus error is cleared by this function.
Caveat: By using this function one has to keep in mind that there is no information which
cycle causes the bus error. Memory mapped transfers don’t check (and don’t clear!) this status
because the driver is not involved in this type of transfers. When the driver is used by multiple

23

applications there is furthermore no information which application caused the bus error!

Note: For simple read and write functions as well as for DMA transfers this function makes no
sense because in this cases a possible bus error is automatically reported and cleared and a call
of this function will always return with 0.

4.10 Using the /proc filesystem

Status information about the driver and the used images can simply be achieved by using the
/proc filesystem. Type

cat /proc/universeII

and see what happens.

Note: This interface is dedicated to status and debugging informations. Polling on this interface
reduces the system and driver performance.

24

5 Performance tests

The creation of a stable driver was one important point in the developement. But in most
cases there is a second question to deal with: How fast is the driver or what is the time of one
complete VME cycle. To answer this question several screenshots of a VME tracer have been
made to show the performance of the different types of read/write functions.

All the following tests are carried out using an intel PIII CPU running at 866 MHz and an 16MB
external VME memory (MMI 6390). An older VMEBus tracer (VMETRO) with a sampling
rate of 16 MHZ was used to provide the following timing lists. Tests with a P4 CPU at 1.4 GHz
showed the expected result of faster VME cycles but for a better presentation of the differences
between the available VME transfer types the results from the slower CPU have been choosen
for this chapter.
Note: The specification of the VME external memory states a cycle time of ≥ 120 ns for read
cycles.

5.1 Simple read/write functions

Using the functions rl, wl, rw, ... is the easiest way to generate VMEBus cycles but it’s the
slowest type of cycle since there is a driver call needed for every function call. In our test
system this leads to nearly 1.3 µs for one VMEBus cycle.

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 12345678 W LONG OK 1111111 1 1 09

0001 ! 1.73 us 0 A2000004 12345678 W LONG OK 1111111 1 1 09

0002 ! 1.24 us 0 A2000008 12345678 W LONG OK 1111111 1 1 09

0003 ! 1.30 us 0 A200000C 12345678 W LONG OK 1111111 1 1 09

0004 ! 1.30 us 0 A2000010 12345678 W LONG OK 1111111 1 1 09

0005 ! 1.30 us 0 A2000014 12345678 W LONG OK 1111111 1 1 09

0006 ! 1.24 us 0 A2000018 12345678 W LONG OK 1111111 1 1 09

0007 ! 1.30 us 0 A200001C 12345678 W LONG OK 1111111 1 1 09

0008 ! 1.30 us 0 A2000020 12345678 W LONG OK 1111111 1 1 09

0009 ! 1.30 us 0 A2000024 12345678 W LONG OK 1111111 1 1 09

0010 ! 1.24 us 0 A2000028 12345678 W LONG OK 1111111 1 1 09

0011 ! 1.30 us 0 A200002C 12345678 W LONG OK 1111111 1 1 09

0012 ! 1.30 us 0 A2000030 12345678 W LONG OK 1111111 1 1 09

0013 ! 1.30 us 0 A2000034 12345678 W LONG OK 1111111 1 1 09

0014 ! 1.24 us 0 A2000038 12345678 W LONG OK 1111111 1 1 09

0015 ! 1.24 us 0 A200003C 12345678 W LONG OK 1111111 1 1 09

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

25

5.2 Simple block read/write functions

For several cycles with ascending VME addresses (a complete block of data) the same functions
as above can be used, but additionally the number of bytes (!) to transfer has to be passed to
the functions. In this case there is only one driver call since the loop over the data block in
done by the driver. In our example this increases the data rate by a factor of two.

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 00000000 W LONG OK 1111111 1 1 09

0001 ! 0.74 us 0 A2000004 00000001 W LONG OK 1111111 1 1 09

0002 ! 0.68 us 0 A2000008 00000002 W LONG OK 1111111 1 1 09

0003 ! 0.68 us 0 A200000C 00000003 W LONG OK 1111111 1 1 09

0004 ! 0.68 us 0 A2000010 00000004 W LONG OK 1111111 1 1 09

0005 ! 0.68 us 0 A2000014 00000005 W LONG OK 1111111 1 1 09

0006 ! 0.68 us 0 A2000018 00000006 W LONG OK 1111111 1 1 09

0007 ! 0.68 us 0 A200001C 00000007 W LONG OK 1111111 1 1 09

0008 ! 0.68 us 0 A2000020 00000008 W LONG OK 1111111 1 1 09

0009 ! 0.68 us 0 A2000024 00000009 W LONG OK 1111111 1 1 09

0010 ! 0.68 us 0 A2000028 0000000A W LONG OK 1111111 1 1 09

0011 ! 0.68 us 0 A200002C 0000000B W LONG OK 1111111 1 1 09

0012 ! 0.68 us 0 A2000030 0000000C W LONG OK 1111111 1 1 09

0013 ! 0.68 us 0 A2000034 0000000D W LONG OK 1111111 1 1 09

0014 ! 0.68 us 0 A2000038 0000000E W LONG OK 1111111 1 1 09

0015 ! 0.68 us 0 A200003C 0000000F W LONG OK 1111111 1 1 09

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

26

5.3 Memory mapped transfers

The fastest transfers can be achieved using memory mapped access to the VMEBus. But one
has to be aware of the fact, that there is no checking for bus error since the driver is not involved
into this cycles (and this is the reason why it’s faster)! But take into account, that these times
are extremly depending on the CPU load. In our example there was no other user application
running.

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 00000000 W LONG OK 1111111 1 1 09

0001 ! 0.37 us 0 A2000004 00000001 W LONG OK 1111111 1 1 09

0002 ! 0.24 us 0 A2000008 00000002 W LONG OK 1111111 1 1 09

0003 ! 0.18 us 0 A200000C 00000003 W LONG OK 1111111 1 1 09

0004 ! 0.24 us 0 A2000010 00000004 W LONG OK 1111111 1 1 09

0005 ! 0.24 us 0 A2000014 00000005 W LONG OK 1111111 1 1 09

0006 ! 0.18 us 0 A2000018 00000006 W LONG OK 1111111 1 1 09

0007 ! 0.24 us 0 A200001C 00000007 W LONG OK 1111111 1 1 09

0008 ! 0.24 us 0 A2000020 00000008 W LONG OK 1111111 1 1 09

0009 ! 0.37 us 0 A2000024 00000009 W LONG OK 1111111 1 1 09

0010 ! 0.24 us 0 A2000028 0000000A W LONG OK 1111111 1 1 09

0011 ! 0.18 us 0 A200002C 0000000B W LONG OK 1111111 1 1 09

0012 ! 0.24 us 0 A2000030 0000000C W LONG OK 1111111 1 1 09

0013 ! 0.24 us 0 A2000034 0000000D W LONG OK 1111111 1 1 09

0014 ! 0.18 us 0 A2000038 0000000E W LONG OK 1111111 1 1 09

0015 ! 0.37 us 0 A200003C 0000000F W LONG OK 1111111 1 1 09

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

27

5.4 DMA

For transfers of complete data blocks the universeII onboard DMA has the advantage of being
fast, having the ability to use VME block transfer modes and there is no intervention needed
by the CPU. Comparing these values with the example above, there is (at the first look) no
gain in transfer speed, but in the DMA case the cycle times are independent of the CPU load!

But one should remember, that this transfer is only preferable when larger data block are
involved. Settingx up the DMA needs time and one has to balance this against normal transfers.

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 00000000 W LONG OK 1111111 1 1 09

0001 ! 0.18 us 0 A2000004 00000001 W LONG OK 1111111 1 1 09

0002 ! 0.24 us 0 A2000008 00000002 W LONG OK 1111111 1 1 09

0003 ! 0.24 us 0 A200000C 00000003 W LONG OK 1111111 1 1 09

0004 ! 0.24 us 0 A2000010 00000004 W LONG OK 1111111 1 1 09

0005 ! 0.24 us 0 A2000014 00000005 W LONG OK 1111111 1 1 09

0006 ! 0.24 us 0 A2000018 00000006 W LONG OK 1111111 1 1 09

0007 ! 0.24 us 0 A200001C 00000007 W LONG OK 1111111 1 1 09

0008 ! 0.24 us 0 A2000020 00000008 W LONG OK 1111111 1 1 09

0009 ! 0.24 us 0 A2000024 00000009 W LONG OK 1111111 1 1 09

0010 ! 0.24 us 0 A2000028 0000000A W LONG OK 1111111 1 1 09

0011 ! 0.24 us 0 A200002C 0000000B W LONG OK 1111111 1 1 09

0012 ! 0.18 us 0 A2000030 0000000C W LONG OK 1111111 1 1 09

0013 ! 0.24 us 0 A2000034 0000000D W LONG OK 1111111 1 1 09

0014 ! 0.24 us 0 A2000038 0000000E W LONG OK 1111111 1 1 09

0015 ! 0.18 us 0 A200003C 0000000F W LONG OK 1111111 1 1 09

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

28

5.5 Blocktransfer, BLT and MBLT

Using VME block transfers increases the data rate typically by a factor of two or three since
only one address cycle is needed at the begin of the transfer.

Note that the used VME tracer runs with a sampling rate of 16 MHz (62.5ns) and therefore
reaches it’s limitations of measuring cycle times in this example.

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 00000000 W LONG OK 1111111 1 1 0B

0001 ! 0.18 us 0 A2000004 00000001 W LONG OK 1111111 1 1 0B

0002 ! 0.12 us 0 A2000008 00000002 W LONG OK 1111111 1 1 0B

0003 ! 0.12 us 0 A200000C 00000003 W LONG OK 1111111 1 1 0B

0004 ! 0.12 us 0 A2000010 00000004 W LONG OK 1111111 1 1 0B

0005 ! 0.12 us 0 A2000014 00000005 W LONG OK 1111111 1 1 0B

0006 ! 0.12 us 0 A2000018 00000006 W LONG OK 1111111 1 1 0B

0007 ! 0.12 us 0 A200001C 00000007 W LONG OK 1111111 1 1 0B

0008 ! 0.12 us 0 A2000020 00000008 W LONG OK 1111111 1 1 0B

0009 ! 0.12 us 0 A2000024 00000009 W LONG OK 1111111 1 1 0B

0010 ! 0.12 us 0 A2000028 0000000A W LONG OK 1111111 1 1 0B

0011 ! 0.12 us 0 A200002C 0000000B W LONG OK 1111111 1 1 0B

0012 ! 0.12 us 0 A2000030 0000000C W LONG OK 1111111 1 1 0B

0013 ! 0.12 us 0 A2000034 0000000D W LONG OK 1111111 1 1 0B

0014 ! 0.12 us 0 A2000038 0000000E W LONG OK 1111111 1 1 0B

0015 ! 0.12 us 0 A200003C 0000000F W LONG OK 1111111 1 1 0B

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

These cycle times (120 ns) are exactly what the specification of the external VME memory
states as the minimum cycle time.

For MBLT (D64) VME cycles the timing is the same as above but the number of transferred
bytes is 8 insted of 4 increasing the data rate by a factor of two.

29

5.6 Linked list operation

In the linked list operating mode the single DMA cycles are as fast as in normal mode but
there is time needed when a new packet has to be loaded. This time is in the order of 3-4µs
where the time of one cycles has to be subtracted.

Note that in this example the time for creating a linked list is not taken into account!

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

TRIG ! 00.0 0 A2000000 00000000 W LONG OK 1111111 1 1 09

0001 ! 0.24 us 0 A2000004 00000001 W LONG OK 1111111 1 1 09

0002 ! 0.24 us 0 A2000008 00000002 W LONG OK 1111111 1 1 09

0003 ! 0.18 us 0 A200000C 00000003 W LONG OK 1111111 1 1 09

0004 ! 3.90 us 0 A2000100 00000000 W LONG OK 1111111 1 1 09

0005 ! 0.24 us 0 A2000104 00000001 W LONG OK 1111111 1 1 09

0006 ! 0.24 us 0 A2000108 00000002 W LONG OK 1111111 1 1 09

0007 ! 0.24 us 0 A200010C 00000003 W LONG OK 1111111 1 1 09

0008 ! 0.24 us 0 A2000110 00000004 W LONG OK 1111111 1 1 09

0009 ! 0.18 us 0 A2000114 00000005 W LONG OK 1111111 1 1 09

0010 ! 0.24 us 0 A2000118 00000006 W LONG OK 1111111 1 1 09

0011 ! 0.24 us 0 A200011C 00000007 W LONG OK 1111111 1 1 09

0012 ! 3.28 us 0 A2000300 00000000 W LONG OK 1111111 1 1 09

0013 ! 4.15 us 0 A2000404 00000000 W LONG OK 1111111 1 1 09

0014 ! 0.31 us 0 A2000408 00000001 W LONG OK 1111111 1 1 09

0015 ! 0.55 us 0 A200040C 00000002 W LONG OK 1111111 1 1 09

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

30

5.7 Interrupt service time

Since the used linux distribution was not a real time version the interrupt service time question
came up. In the following example an additional VME master write data into a slave image.
After the last cycle (nr. 948) an interrupt is generated. The VME interrupt is serviced by the
universeII chip which means reading the status/ID word (cycle nr. 949) and generating the
corresponding PCI interrupt. Afterwards the interrupt servies routine of the universeII driver
is called which first checks that the interrupt came from the universeII chip. This is necessary
since we allow the use of shared interrupts. Then this routines cleares the still active VME
interrupt by writing to the a specific register of the second VME master (cycle 950). If there
is a sleeping process waiting for this interrupt and this combination of VME interrupt level
and status/id word, this process will be waken up and the service routine is left. Cycle nr.
951 is the first instruction in the user application, so that the complete time from creating a
VME interrupt until waking up can be calculated. For our example it’s in the order of twelve
microseconds.
It is obvious that these timings are extremly hardware depended and this example should only
be used to get a feeling for the order of the interrupt service time!

V M E b u s T r a c e , group 1 of 3 Sampling mode : SYNC

! TIME BUS ADDRESS DATA R/W SIZE STAT IRQ* IACK* AM

! rel. LEVEL 7654321 OC I/O

-----!---

0948 ! 0.18 us 3 B05E00EA B05E0119 W LONG OK 1111111 1 1 08

0949 ! 2.10 us 0 0000000F xxxxxx02 R LBYTE OK 0111111 0 0 29

0950 ! 5.89 us 0 00E02238 00000000 W LONG OK 1111111 1 1 39

0951 ! 4.21 us 0 00E0220C FFFFA033 R LONG OK 1111111 1 1 39

Time abs/rel:T Scroll:<,> Other group:X Jump:J Search:S Print:P Quit: Q

31

6 Miscellaneous

6.1 Byte swapping

The universeII always performs address invariant translation between the PCI and the VME-
Bus. Depending on the used platform, the byte ordering in the application can be different
from the byte ordering on the VMEBus. This is the case e.g. for intel based platforms where
the byte ordering is little endian whereas the VMEbus uses big endian.

Since the driver is written to run under linux and under different platforms (Intel, PowerPC,
Alpha, ...) it does not do any byte swapping by itself. In addition the VMEBridge class leaves
the byte unchanged. The swapping (if wished) must be done by the user application. Before
writing to or after reading data from VMEBus this data must be swapped, which can be done
by the following two functions (note that the byte swapping for 16 bit and 32 bit words is
different!):

unsigned int swap32(unsigned int val)

{

return ((val & 0xFF000000) >> 24) | ((val & 0x00FF0000) >> 8) |

((val & 0x0000FF00) << 8) | ((val & 0x000000FF) << 24);

}

unsigned short swap16(unsigned short val)

{

return ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);

}

There are some manufactures who add a hardware swapping device to their boards, so there is
no need to care about it. See also chapter 6.5.

6.2 Compiler Optimization

Be careful when using compiler optimization! Make sure that your program runs without any
problems before switching on optimization.
Many VMEBus boards use a technique which is called ”’key-address”’ technique. This means
that reading a specific address on this module causes it to do some action. The value of the
read cycle is without interest. One simple example:

void doSomeAction(void)

{

unsigned int dummy32, *ptr;

*ptr = (unsigned int *) (MODULE_BASE);

dummy32 = *ptr;

}

32

MODULE BASE is the mapped VMEBus address of the module (see chapter memory mapped
access). This small function reads a 32-bit word but leaves the function without using the read
value. When compiler optimization is switched off (-O0) this code works without problems.
Using optimization (-O2) this functions does not perform any cycle on the VMEBus!
The compiler knows nothing about key-address technique. It seems that a memory location
is read but nothing will be done with the read value. So the instruction dummy32 = *ptr; is
removed from the code!
This can be avoided by using the volatile attribute.

volatile unsigned int dummy32;

The modifier volatile tells the compiler that a variable’s value may be changed in ways not
explicitly specified by the program. So it prevents the compiler doing any optimization with
instructions where dummy32 is involved.

In addtion, using loops together with optimization can lead to unexpected results. Let’s assume
that reading an specific address triggers a VME module to do some action and we want to do
this 100 times.

void doSomeAction(unsigned int)

{

int i;

unsigned int dummy32, *ptr = (unsigned int *) (MODULE_BASE);

for (i = 0; i < 100; i++)

dummy32 = *ptr;

return dummy32

}

Since we return dummy32 the read intruction will not be removed by the compiler but the loop.
For the compiler it makes no sence to read a memory location several times without modifying
it. Thus the read instruction will be executed only one time.

6.3 memcpy and others

Be careful using builtin functions like memcpy. Passing a memory mapped VME address to this
function leads to a byte-wise (!) copy process. Most parameters of memory handling functions
(copy memory block, clear memory, ...) are declared as char * and only a small number of
VME modules support D8 cycles. Normally it will be faster to readout data with D16 or D32.

33

6.4 Message logging

In some cases it can be useful to redirect message output of the VMEBridge interface class from
screen to files, a logging system or something else. For this purpose there are two functions
implemented which can be used to redirect output from cout and/or cerr (which is the default)
to anything of type ostream *.

void setStdlog(ostream *log)

void setErrorlog(ostream *log)

6.5 VMIC define

There are some manufacters which solve the problem with byte-swapping by adding an addi-
tional chip between VME- and PCI-bus. This chip can be programmed to do byte swapping or
not. For VMEBus CPUs boards from VMIC byte swapping can be switched on with a #define

VMIC in the driver. This solution is very fast, since the byte-swapping is done by hardware and
not by software. In addition it makes code easier, more elegant and avoids programming errors.

6.6 readUniReg, writeUniReg

These two functions allow read and write access to registers of the universeII chip which are
not supported by the driver. But be careful and make sure that the register is not used by the
driver or unexpected things may happen.

unsigned int readUniReg(int reg)

void writeUniReg(int reg, unsigned int data)

The register to read/write from/to must be passed to reg and is the offset address of the
register (see Tundra User Manual for details of register offsets). Example: Read the Location
Monitor Base Address Register (LM BS) with

cout << "LM_BS = " << readUniReg(0xF68) << "!\n";

Take a look at the Tundra manual for more details.

6.7 VMEBus SYSRESET∗

The VMEBus SYSRESET∗ signal is implemented on most VMEBus modules and can be used
for reset functions or whatever the designer of the module assigned to it. This is a most
common way to bring modules back in a defined state after crashes or hangups. For CPUs this
SYSRESET∗ signal has the same effect as pressing the reset button at the front panel. In some
cases it makes no sence that all modules react to this signal. For this reason the most VMEBus
modules have jumpers onboard which define if the module should react to a SYSRESET∗ or

34

not. For every module one should have a look in the manual to check how to enable this
function and what this signal triggers.
The corresponding function is:

void vmeSysReset(void);

Note: When your CPU is jumpered to allow incoming SYSRESET∗ it will reboot when this
signal occurs! Even if the CPU generated this signal itself by calling the upper function.
On some boards there is an additional jumper to allow the generation of an outgoing SYSRESET∗

signal. Make sure that all these jumpers are in the right postion to avoid undesired reset signals.

6.8 Driver reset

During test and debugging of applications it can happen that something hangs or crashes.
In this case the allocated images or the universeII DMA remain allocated and can’t be used
anymore. Removing the driver with rmmod is one possibility to reset the driver but one has to
be root to do this.
A better solution has been implemented in the interface class with the function:

int resetDriver();

This resets the driver by doing the following actions:

• Release all allocated images.

• Release DMA.

• Remove all DMA command packet lists.

• Clear all previous error bits.

• Release allocated mailboxes.

• Free all irq/StatusID combinations and finally

• Reset all statistic counters.

But be sure to exit or kill all existing programs which use the universeII driver before calling
this function!

35

7 Quick reference

VMEBridge();

~VMEBridge();

int bridge_error;

The constructor initalizes some internal variables and checks that the control and the DMA
device of the universe driver are accessible. Error codes (< 0) are stored in the variable
bridge error.

The destructor removes all existing lists (see DMA linked list operation) and closes all open
images or other devices. Releasing an allocated image (see function releaseImage) which is not
needed anymore can be done with the release function or will be at least done by the destructor.

int getImage(unsigned int base, unsigned int size, int vas, int vdw, int ms);

Allocates an image from address base to base+size for VME cycles with address and data size
defined by vas and vdw. Setting the allocated image as master or slave image can be done with
parameter ms (use the predefined values MASTER or SLAVE). Return value greater or equal
zero is the number of the allocated image. Values smaller zero are error codes.

void releaseImage(int image);

An allocated image is automatically released by the destructor. In some cases it is necessary
to release an image by hand. This can be done with this function where image is the number
of the image to release.

unsigned int getPciBaseAddr(int image);

This function returns an address in user space which corresponds to the lowest VMEBus ad-
dress of image image and is needed for memory mapped transfers.

void setOption(int image, unsigned int opt);

The option for an image are set to the mostly needed values. If other settings are required this
function provides the necessary interface. Modifies options like block transfers on/off of image
image. Use the predefined values/options in vmelib.h.

// Read/Write access to VME resources, data size 1,2,4 byte(s)

int rl(int image, unsigned int addr, unsigned int *data);

int wl(int image, unsigned int addr, unsigned int data);

36

int rw(int image, unsigned int addr, unsigned short *data);

int ww(int image, unsigned int addr, unsigned short data);

int rb(int image, unsigned int addr, unsigned char *data);

int wb(int image, unsigned int addr, unsigned char data);

// Block read/write functions

int rl(int image, unsigned int addr, unsigned int *data, int size);

int wl(int image, unsigned int addr, unsigned int *data, int size);

int rw(int image, unsigned int addr, unsigned short *data, int size);

int ww(int image, unsigned int addr, unsigned short *data, int size);

int rb(int image, unsigned int addr, unsigned char *data, int size);

int wb(int image, unsigned int addr, unsigned char *data, int size);

For read or write transfers to/from a VMEBus module there are a set of functions. The first
letter indicates if the function performs a read or a write cycle, the second letter defines the data
width. long for 32-bit transfers, word for 16-bit cycles and byte for 8-bit data. If parameters
size is passed to the function, a transfer of a complete data block will be performed.

// Test and VMEBus error related functions

int there(unsigned int addr);

int there8(unsigned int addr);

int there16(unsigned int addr);

int there32(unsigned int addr);

int testBerr();

Function there() tests if the given address is readable using the data width of an allocated
image convering address. The other three function use the given data width (D8, D16 or D32)
for testing address.

To check if an uncleared VMEBus error is still available, the function testBerr() can be used.

int setupIrq(int image, int irqLevel, int statusID, unsigned int addrSt,

unsigned int valSt, unsigned int addrCl, unsigned int valCl);

Setting up irq handling is a little bit complicated and is explained in chapter 4.5

37

int waitIrq(int irqLevel, int statusID);

Waits for a VMEBus intterupt with VME level irqLevel and status/ID word statusID.

int generateVmeIrq(unsigned int irqLevel, unsigned int statusID);

Generates a VMEBus interrupt with VME irq level irqLevel and provides status/ID during
IACK cycle.

int setupMBX(int mailbox);

unsigned int waitMBX(int mailbox);

unsigned int waitMBX(int mailbox, unsigned int timeout);

int releaseMBX(int mailbox);

Allocating, waiting for and releasing a mailbox. Valid mailbox numbers are in [0..3]. se-
tupMBX(mailbox) and releaseMBX(mailbox) return 0 for success, negative numbers in case of
an error. waitMBX(mailbox) returns the value which was written to the mailbox and triggered
the interupt. Error code is 0xFFFFFFFF, so take care to not write this value into a mailbox.

unsigned int requestDMA(void);

unsigned int requestDMA(nrOfBuffers);

Requests ownership of the universeII onboard DMA. If DMA is not available zero will be re-
turned in case of success the address of the DMA buffer in user space. When using multi buffer
handling, nrOfBuffers must be in [1..128] and of 2n.

void releaseDMA(void);

Release ownership of universeII onboard DMA.

int DMAread(unsigned int source, unsigned int count, int vas, int vdw);

int DMAread(unsigned int source, unsigned int count, int vas, int vdw,

unsigned int bufNr);

int DMAwrite(unsigned int dest, unsigned int count, int vas, int vdw);

int DMAwrite(unsigned int dest, unsigned int count, int vas, int vdw,

unsigned int bufNr);

Writes or reads count bytes (!) from/to source/dest using VMEBus address and data width
vas/vdw. For multi buffer handling the buffer number must be passed in addition.

int newCmdPktList(void);

38

Creates a new list for DMA linked list operation mode. The number of the new list is returned.
Negative values in case of error.

delCmdPktList(int list);

Removes an existing list and all command packets of it.

unsigned int addCmdPkt(int list, int write, unsigned int vmeAddr,

int size, int vas, int vdw);

Adds a command packet to an existing list. In case of error 0xFFFFFFF (-1) is returned, else
the address to the buffer space of this command packet.

int execCmdPktList(int list);

Executes list list and returns after completion of all command packets. Negative return values
in case of error.

unsigned int readUniReg(int reg);

void writeUniReg(int reg, unsigned int data);

Read and write access to universe II register (for use of unsupported features) is carried out
with these two functions.

int resetDriver();

Completely resets the universeII driver. Make sure to exit or kill all programs using the driver
before calling this function.

void vmeSysReset();

Generates a VMEBus SYSRESET∗ signal.

39

	1 Introduction
	2 Installation
	2.1 Driver
	2.2 Driver interface
	2.3 VME debugger
	2.4 Test and demonstration programs

	3 General informations
	3.1 Master and slave images
	3.2 DMA
	3.3 Interrupt handling

	4 How to use this driver
	4.1 Simple read and write functions
	4.2 Memory mapped transfers
	4.3 DMA transfers
	4.3.1 Direct mode
	4.3.2 Linked List Mode
	4.3.3 DMA multi-buffer handling

	4.4 Slave images
	4.5 VMEBus Interrupt handling
	4.6 VMEBus Interrupt generation
	4.7 Mailbox access
	4.8 Image options
	4.9 VMEBus error handling and test functions
	4.10 Using the /proc filesystem

	5 Performance tests
	5.1 Simple read/write functions
	5.2 Simple block read/write functions
	5.3 Memory mapped transfers
	5.4 DMA
	5.5 Blocktransfer, BLT and MBLT
	5.6 Linked list operation
	5.7 Interrupt service time

	6 Miscellaneous
	6.1 Byte swapping
	6.2 Compiler Optimization
	6.3 memcpy and others
	6.4 Message logging
	6.5 VMIC define
	6.6 readUniReg, writeUniReg
	6.7 VMEBus SYSRESET*
	6.8 Driver reset

	7 Quick reference

